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Abstract   
               This present work focused on new nozzles design method, based on the characteristics 

method, which is a technique method to reduce a partial differential equation to linear differential 

equations along which the solution can be integrated from initial conditions. The latter is developed 

under the real gas theory, because when the both pressure and temperature of a gas increases, the 

specific heat and their ratio do not remain constant anymore and start to vary with the gas 

parameters. The gas doesn’t stay perfect, and it becomes a real gas. The presented equations of the 

characteristics remain valid whatever area or field of study. With the assumptions that Berthelot’s 

state equation accounts for molecular size and intermolecular force effects, expressions are 

developed for analyzing the supersonic flow for thermally and calorically imperfect gas. The 

resolution has been made by the finite differences method using the corrector predictor algorithm. As 

result, the developed mathematical model used to design 2D minimum length nozzles under effect of 

the stagnation parameters of fluid flow. A comparison for air with the perfect gas PG and high 

temperature HT models on the one hand and our results by the real gas theory on the other of nozzles 

are made. An important gain of length and weight can rise up to 40% and 20% respectively.  It is in 

this context that Minimum Length Nozzle (MLN) nozzles for aerospace engines based on real gas 

theory were developed to achieve maximum thrust with the smallest possible nozzle weight (minimum 

length). 

 

 
Introduction 
 

 In mathematics, the characteristics method is a technique for solving partial 

differential equations. Particularly suitable for transport problems, it is used in 

many fields such as fluid mechanics or particle transport [1]. In some particular 

cases, the characteristics method may allow the purely analytical resolution of the 

partial derivative equation. In more complex cases (encountered for example in 

modeling of physical systems), the characteristics method  can be used as a method 
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for the numerical resolution of the problem. For a first order partial differential 

equation, the characteristics method looks for curves called characteristic lines or 

more simply characteristics along which the partial differential equation is reduced 

to a simple ordinary differential equation. The resolution of the ordinary 

differential equation along a characteristic makes it possible to find the solution of 

the original problem. 

 The need for improving the performance of supersonic nozzles plays a very 

important role in the field of propulsion and aerospace engineering. The supersonic 

nozzle contains a very important weight in an engine, including missiles and 

supersonic aircraft [2]. The weight of the nozzle can reach 80% of the total weight 

of the engine [3, 4]. So it's interesting to find physical solutions generally to the 

different problems for improving performances. The performance of a supersonic 

nozzle is usually the mass of the structure, the thrust coefficient, the exit Mach 

number delivered, since the design of the nozzle is made on the basis of a non-

viscous fluid. 

 Among several known types of nozzles in aerospace industry. it is expected 

that there are about twenty forms of nozzles; one is interested in our work with the 

nozzle with centered expansion or by the Minimum Length Nozzle (MLN) nozzle 

[5, 6], for reason that the international construction of several aerospace projects 

currently use this type of nozzle [7]. The resolution of the conservation equations is 

done in the first step by the characteristic method in order to transform these 

equations to simplified coupled nonlinear algebraic equations according to 

privileged directions called the characteristics. In this case the equations obtained 

are considerably simplified, but the mesh calculation becomes very complex [8]. 

The mesh generation is done in parallel with the calculation of the parameters of 

the flow. 

 After a literature search, it has been noted that the majority of published 

work in the field of supersonic nozzle design is based on the use of two models 

which are either the perfect gas model with constant specific heat CP [9, 10] or the 

high temperature model when CP is a function of temperature [11]. These 

assumptions will not take into account the real behavior of the gas when the 

stagnation pressure is high. In this case, the mathematical model of the calculation 

changes and must be completely revised. 

 With the advent of space propulsion, engine manufacturers were 

constrained by a specification limiting the weight and length of the diverging part 

of a nozzle, to be defined, according to the optimum of the sections ratio and the 

weight, while trying to minimize thrust losses compared to the ideal nozzle. The 

problem encountered in aerospace applications is that the use of nozzles designed  

on the basis of the perfect gas assumptions degrades the performance desired by 

this nozzle [12]. If we take measurements by experience, we will find values 

different from those determined by calculation; especially if the stagnation 

temperature and pressure of the combustion chamber are high. As current and 
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future rocket engines have to be adapted to high pressures and temperatures, the 

concept of an ideal nozzle is excluded because it would lead to a length and a 

weight of the divergent which are prohibitive [13]. Engine manufacturers 

constrained by a specification limiting the weight and length of a space engine 

nozzle are led to seek an optimum of the thrust-to-weight ratio for a fixed sections 

ratio.  

 In this work, we will present the method of design and dimensioning of 

two-dimensional centered expansion type nozzles or MLN nozzles using the new 

form of method of the characteristics. We have added the effect of the gaseous 

imperfections on all parameters and then the method becomes a function of the 

temperature and the density, and strongly stays valid when the stagnation 

temperature and pressure of the combustion chamber are high, lower than the 

dissociation threshold of the molecules. 

 

Materials and Methods 
 

 The application of the minimum length nozzle with straight sonic line is 

used for hypersonic wind tunnels as well as rocket motors [14]. The study is 

limited for the case of the two dimensional minimum length nozzles. 

 

 

Fig. 1. Presentation of the flow field in the bidimensional centered expansion nozzle 

 
 Fig. 1 illustrates the general scheme of the minimum length nozzle with 

straight sonic line and represents the characteristics of the flow field in different 

regions [5]. This nozzle is called a centric expansion nozzle (MLN). The flow 

between the throat OA and the uniform region BES is divided into two regions. 

The OAB region, called by Kernel region, is a region of non-simple waves. The 

triangular region BES is a uniform flow region with exit Mach number ME. In this 

contest, the wall, at the throat, is inclined at an angle *. 
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 For a supersonic, irrotational, adiabatic flow, the characteristic method 

gives the following equations, called equations of characteristics and 

compatibilities [6]: 

According to ξ (1-3):  
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According to η (2-3):  
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 Equations (1) and (2) are valid for C- and C+, respectively, as shown in  

Fig. 2. In the real case, the characteristics are curved, and if the mesh is fine so that 

the points are close to each other, we can bring the curvature by a straight line, the 

calculation will be on the lines of Mach named ξ on characteristic C-  and η on 

characteristic C+ as shown in Fig. 2. 

 

Fig. 2.  Illustration of characteristic lines and Mach lines. 

 The relationships in the system of equations (1) and (2) are developed for 

our model in previous work: 

The new form of Prandtl Meyer function is given by [15]: 
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The flow and sound velocities [16, 17] 
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The Mach number and the Mach angle are given by [10]: 
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The integration of the systems (1) and (2) gives: 

According to ξ (1-3): 
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According to η (2-3): 
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 When our systems have five unknowns (x, y, θ, T and ρ), we need to add 

another equation presented as follows: 

According to ξ (1-3): 
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 As mentioned, the characteristics C- and C + are curves, the application of 

the method of the characteristics obliges to introduce a fine mesh in order to 

approximate each characteristic between two points by segments of straight line 

[18]. The properties (x, y, T, , ρ, P) at a point of flow field can be determined 

from those of the two points connected with the point considered by the 

characteristic lines which precede it. For example the properties in point 3 of Fig. 2 

can be determined from those of points 1 and 2 which connect them.  

 
Error of Perfect Gas and High Temperature Models  

 

The mathematical perfect gas model is developed on the basis to regarding 

the specific heat CP and ratio ϒ as constants, which gives acceptable results for low 

temperature. According to this study, we can notice a difference on the given 

results between the perfect gas model and the developed model. The error given by 

the PG model compared to our RG (real gas) model can be calculated for each 

parameter. Then, for each value (P0, T0, M), the ε error can be evaluated by the 

following relationship [19, 20]: 
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 As a rule for the aerodynamic application, the error should be lower  

than 5%. 

 

Results and Comments 
 

Effect Of Discretization And Mesh Refinement On The Convergence 
 

 Fig. 3, shows the steps of the mesh by the insertion of the additional 

characteristics Ni between the sonic line and the first descending characteristic as 

well as the injection of a condensation function Δ between the two last descending 

characteristics, the final quality of the mesh of the 2D MLN nozzle for Δθ = 0.6°, 

Ni = 10 and Δ = 8. It can be said that the number of NC points found on the last C- 

depends on the exit Mach number, the stagnation temperature T0, the stagnation 

pressure P0, the step Δθ, the number of inserted characteristics Ni, the coefficient of 

condensation Δ. Note that it is very interesting to refine the mesh on the wall in the 

vicinity of the neck, because the nature of a supersonic flow determines the 

properties at a point as a function of two points which are upstream. Then, a poor 

presentation of the wall at the thoat will propagate and enlarge the errors at the exit, 
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and therefore, we will determine a bad pace of the wall. The control of the results is 

done by the use of the ratio of the sections which remains always valid since the 

flow at the exit of the nozzle is uniform and parallel. 
 



Ni=10

=8

 

Fig. 3.  Refinement of the mesh in the Kernel zone of the MLN 2D nozzle with the effects  

of the insertion of additional characteristics Ni and the condensation coefficient Δ 

 
Effect Of The Stagnation Conditions T0 And  P0 On The Wall Shape 
 

 Fig. 4, represent the variation of the nozzles shape y / y* obtained when the 

exit Mach number MS is equal to 1.50, 3.0 and 6.0 given respectively by the 

stagnation temperatures T0 = 1 000 K, 2 000 K, and 3 000 K and for the stagnation 

pressures P0 = 1 bar, 10 bar, and 100 bar, as a function of the abscissa number x / 

y*, of the RG model compared to the PG and HT models. We note that the increase 

of the ratio x / y* for different models leads to an increase of y / y *, we also note 

that the variation of the stagnation temperature for the values P0 = 1 bar, 10 bar and 

100 bar, influences on the ratio y / y*, the shape decrease when P0 increases, which 

is not the case for the PG and HT models, this reduction is more important and 

remarkable when the stagnation pressure P0 and the exit Mach number are high 

(see Fig. 4.f ), hence the need to use the RG model to correct the results, and to 

show the effect of the stagnation pressure P0 on the design. Between the figures 

presented, we can say that if the stagnation pressure P0 increases, the difference 

between the GP, HT models and our RG model enlarged and becomes 

considerable, independently of the exit Machnumber MS, or from MS > 2.00 for any 

pressure P0. This limit can be found if we choose an ε error less than 5%. 
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Fig. 4. 2D MLN nozzle shapes for some exit Mach number values 
 

Variation Of The Parameters Through The Nozzle 
 

Fig. 5 represent the variation of the Mach number along the wall of the 

nozzle as a function of the ratio x / y*, for the HT, GP and RG models. We can 

clearly remark that the increase in the Mach number for M = 1 at the collar at  

M = M* just after the expansion, then at M = MS at the exit section of the nozzle. 

0 2 4 6 8 10 12 14 16 18 20

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

MS=3.0

(d)

x / y*

 GP

 HT T
0
=1000 k

 HT T
0
=2000 k

 HT T
0
=3000 k

 RG T
0
=1000 k

 RG T
0
=2000 k

 RG T
0
=3000 k

y / y* P
0
= 100 bar

0 100 200 300 400 500 600

0

10

20

30

40

50

60

70

80

90

MS=6.0

(e)

 GP

 HT T
0
=1000 k

 HT T
0
=2000 k

 HT T
0
=3000 k

 RG T
0
=1000 k

 RG T
0
=2000 k

 RG T
0
=3000 k

x / y*

y / y*
P

0
= 1 bar

0 100 200 300 400 500 600

0

10

20

30

40

50

60

70

80

90

MS=6.0

(f)

x / y*

 GP

 HT T
0
=1000 k

 HT T
0
=2000 k

 HT T
0
=3000 k

 RG T
0
=1000 k

 RG T
0
=2000 k

 RG T
0
=3000 k

y / y*
P

0
= 100 bar



177 

 

The example taken here is for Ms = 6.00. There is an uniform Mach number 

constant along the wall near the throat regardless of T0 and P0, which is interpreted 

by the existence of a nearly uniform flow zone in this region for this type of nozzle. 

The increase in the Mach number through the wall is interpreted by the expansion 

of the gas to the exit section. 
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Fig. 5. Variation of the Mach number along the wall of the nozzle for ME = 3.0 

 
Conception Parameters 

 

Figs. 6–9 present, the variation of the Kernel zone length, the total length, 

the nozzle structure weight and the exit section area of the nozzle respectively, as a 

function of Mach number ME and T0, for GP, HT and RG models, it is noted that 

the more the nozzle delivers a high exit Mach number, the higher these results 

become important. The purpose of the presentation of this variation is that, from 

the length of this zone, one can deduce the length of the nozzle directly without 

making the calculation of the flow in the transition zone. Always note that the 

curves are confused at low Mach number up to about ME = 2.00. From this value, 

the curves start to differentiate, and the results obtained by our RG model are away 

from those obtained by the HT model when the temperature T0 increases, we can 

say that the perfect gas theory gives good results if this condition is verified. From 

these results it can be said that there are significant gains in the length and weight 

of the nozzle. 
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Fig. 6. Variation of the Kernel zone length of the nozzle 
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Fig. 7. Variation of the total length of the nozzle 

 

1 2 3 4 5 6

0

100

200

300

400

500

600 CMasse

 GP

 HT T
0
=1000 k

 HT T
0
=2000 k

 HT T
0
=3000 k

 RG T
0
=1000 k

 RG T
0
=2000 k

 RG T
0
=3000 k

ME  

Fig. 8. Variation of the nozzle structure weight 
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Fig. 9. Variation of the exit section area of the nozzle 

Fig. 10 shows, the variation of the thrust coefficient CF versus exit Mach 

number, for HT, PG and RG models, we note that the increasing the Mach number 

for different models leads to an increase of thrust coefficients, and the variation of 

the stagnation temperature, e.g. for T0 = 1 000 K, 2 000 K, 3 000 K, influences the 

CF values.  Therefore, the CF coefficient increases when T0 increases, which is not 

the case for the perfect gas model. Otherwise, if the exit Mach number is less then 

ME = 2.0, we note that the three PG, HT and RG models are confounded, and 

moving away when MS increases. For instance, if Ms = 5.0 and T0 = 3 000K, 

CF  = 1.65234 for the PG model, CF  = 1.73381 for the HT model, CF  = 1.73004 for 

RG model, with a relative error between the HT model and for our RG model equal 

to ε = 1.22%. Therefore, when the stagnation parameters increases the thrust 

coefficient CF obtained by the RG model moves away from those obtained by HT 

model, which shows the effect of the stagnation parameters on the nozzle 

performances. 
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Fig. 10. Variation of the pressure force exerted on the nozzle wall 
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Results On The Conception Errors  
 

 Fig. 11  presents, the variation of the relative error given by the length and 

the exit section area of the nozzle given respectively by the generating 

temperatures T0 = 1000 K, 2000 K, and 3000 K, it is clear that the error depends on 

the values of  T0 and ME , and increases if ME increases, and decreases if the 

temperature T0 increases. For example, if T0 = 1000 K and MS = 6.00, the use of 

the HT model will give us a relative error equal to ε = 36.03%, the latter will 

decreases up to ε = 15.56% when temperature T0 = 3000 K for the length of the 

nozzle. It is clear that if we choose an error for example lower than 5%, the PG 

model may be used, if T0 is less than 1000 K for any value of the Mach number. If 

an author accepts an error greater than 5%, he can use the PG model in moderate 

interval of M, P0 and T0. 

It may be noted that, at low values of ME, the error ε is small. In these 

figures we find the error below 5%. This position is interpreted by the possibility of 

using the PG model for the aeronautical applications, if we accept an error less 

than 5%. Otherwise, if the temperature T0 is low, the error increases progressively, 

in this case, we can use the PG model independently to the temperature T0, when 

the Mach number does not exceed M = 2.0 with an error of about 5.5%. 
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Fig. 11.  Variation of the relative error given by the length and the exit section area 
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Conclusion 

 

From this study, we can highlight the following points: 

If we accept an error lower than 5%, which is generally the case for 

aerodynamic applications, we can study a supersonic flow using the relationships 

of a perfect gas, if T0 is less than 1000 K for any value of the Mach number, with a 

stagnation pressure well definite and moderate. 

The PG model is represented by explicit and simple relations and does not 

require much time to make calculation, which is not the case for our RG model, 

where it is presented by solving a nonlinear algebraic equations, solving a nonlinear 

algebraic equation system formed by three equations and derivation and integration 

of a complex analytical functions require and take more for calculation time and 

numerical programming and data processing. 

At low temperature, the difference in results obtained between the PG and 

RG models is small, which gives the opportunity to study RG flow using the PG 

relations, especially when P0 increases. By cons, when T0 increases, the PG theory 

starts to give results moving away progressively from the real cases, where we 

need to use the RG model. 

At low pressure, the difference in results obtained between the HT and RG  

models is small, which gives the opportunity to study RG flow using the relations 

HT, especially when T0 increases. Otherwise, when P0 increases, the HT theory 

starts to give results moving away progressively from the real cases, where we 

need to use the RG model. 

 If the MLN 2D nozzle of the RG model all deliver the same exit Mach 

number ME as delivered by the MLN 2D nozzle for HT and GP models, they all 

however have a mass lower than it. This gain in mass can increases up to 20%, 

which is very significant in aerospace applications. But their thrust coefficients 

remain constant because they have the same exit Mach number ME. 

 Significant gains was found on Kernel length and the total nozzle length, as 

well as the nozzle exit section area and the nozzle structure weight, then an 

improvement in nozzle performance by reducing the volume occupied by the 

nozzle and its mass, this variation of the weight can replace the increase of the 

payload of the apparatus. 

 Since the flow at the exit section is horizontal, the nozzle may be truncated 

to a section having a velocity deviation of one or two degrees. In this case, we 

make a large gain in mass and reduce the weight. The flow at the exit of the 

truncated nozzle becomes inclined in the vicinity of the wall, and in this case the 

pressure force exerted on the inner wall of the nozzle will decrease slightly. 
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НОВЫЙ МЕТОД ДИЗАЙНА ДЛЯ ВЫСОКИХ УСЛОВИЙ, 

ПРИМЕНЯЕМЫЙ НА СОПЛАХ МИНИМАЛЬНОЙ ДЛИНЫ 

 
М. Рудан, М. Салхи, А. Бушерит 

 
Аннотация 

 Резюме, настоящая работа сосредоточена на новом методе проекти-

рования сопел, основанном на методе характеристик, который представляет 

собой технический метод для сведения уравнения в частных производных к 

линейным дифференциальным уравнениям, по которым решение может быть 

интегрировано из начальных условий. Последний был разработан в соот-

ветствии с теорией реального газа, потому что, когда давление и температура 

газа увеличиваются, удельная теплоемкость и их соотношение больше не 

остаются постоянными и начинают изменяться в зависимости от параметров 

газа. Газ не остается идеальным, и он становится настоящим газом. Пред-

ставленные уравнения характеристик остаются в силе независимо от области 

или области исследования. Исходя из предположения, что уравнение 

состояния Бертло учитывает размер молекул и эффекты межмолекулярных 

сил, разработаны выражения для анализа сверхзвукового потока для терми-

чески и калорически несовершенного газа. Разрешение было выполнено 

методом конечных разностей с использованием алгоритма корректора-пред-

сказателя. В результате на основе разработанной математической модели 

спроектированы двухмерные сопла минимальной длины с учетом параметров 

торможения потока жидкости. Сделано сравнение для воздуха с идеальным 

газом PG и высокотемпературными моделями HT, с одной стороны, и наши 

результаты по теории реального газа, с другой стороны, для сопел. Значи-

тельный прирост длины и веса может достигать 40% и 20% соответственно. 

https://journals.sagepub.com/toc/piga/231/2
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